Arbeitspapier
Network quantile autoregression
It is a challenging task to understand the complex dependency structures in an ultra-high dimensional network, especially when one concentrates on the tail dependency. To tackle this problem, we consider a network quantile autoregres- sion model (NQAR) to characterize the dynamic quantile behavior in a complex system. In particular, we relate responses to its connected nodes and node spe- ci c characteristics in a quantile autoregression process. A minimum contrast estimation approach for the NQAR model is introduced, and the asymptotic properties are studied. Finally, we demonstrate the usage of our model by in- vestigating the nancial contagions in the Chinese stock market accounting for shared ownership of companies.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 649 Discussion Paper ; No. 2016-050
- Klassifikation
-
Wirtschaft
- Thema
-
Social Network
Quantile Regression
Autoregression
Systemic Risk
Financial Contagion
Shared Ownership
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Zhu, Xuening
Wang, Weining
Wang, Hangsheng
Härdle, Wolfgang Karl
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (wo)
-
Berlin
- (wann)
-
2016
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Zhu, Xuening
- Wang, Weining
- Wang, Hangsheng
- Härdle, Wolfgang Karl
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Entstanden
- 2016