Arbeitspapier

Network quantile autoregression

It is a challenging task to understand the complex dependency structures in an ultra-high dimensional network, especially when one concentrates on the tail dependency. To tackle this problem, we consider a network quantile autoregres- sion model (NQAR) to characterize the dynamic quantile behavior in a complex system. In particular, we relate responses to its connected nodes and node spe- ci c characteristics in a quantile autoregression process. A minimum contrast estimation approach for the NQAR model is introduced, and the asymptotic properties are studied. Finally, we demonstrate the usage of our model by in- vestigating the nancial contagions in the Chinese stock market accounting for shared ownership of companies.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2016-050

Klassifikation
Wirtschaft
Thema
Social Network
Quantile Regression
Autoregression
Systemic Risk
Financial Contagion
Shared Ownership

Ereignis
Geistige Schöpfung
(wer)
Zhu, Xuening
Wang, Weining
Wang, Hangsheng
Härdle, Wolfgang Karl
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2016

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Zhu, Xuening
  • Wang, Weining
  • Wang, Hangsheng
  • Härdle, Wolfgang Karl
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2016

Ähnliche Objekte (12)