Arbeitspapier

Validating linear restrictions in linear regression models with general error structure

A new method for testing linear restrictions in linear regression models is suggested. It allows to validate the linear restriction, up to a specified approximation error and with a specified error probability. The test relies on asymptotic normality of the test statistic, and therefore normality of the errors in the regression model is not required. In a simulation study the performance of the suggested method for model selection purposes, as compared to standard model selection criteria and the t-test, is examined. As an illustration we analyze the US college spending data from 1994.

Sprache
Englisch

Erschienen in
Series: Discussion Paper ; No. 478

Thema
asymptotic normality
linear regression
model selection
model validation

Ereignis
Geistige Schöpfung
(wer)
Holzmann, Hajo
Min, Aleksey
Czado, Claudia
Ereignis
Veröffentlichung
(wer)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(wo)
München
(wann)
2006

DOI
doi:10.5282/ubm/epub.1846
Handle
URN
urn:nbn:de:bvb:19-epub-1846-3
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Holzmann, Hajo
  • Min, Aleksey
  • Czado, Claudia
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Entstanden

  • 2006

Ähnliche Objekte (12)