Arbeitspapier

Bootstrap tests for the error distribution in linear and nonparametric regression models

In this paper we investigate several tests for the hypothesis of a parametric form of the error distribution in the common linear and nonparametric regression model, which are based on empirical processes of residuals. It is well known that tests in this context are not asymptotically distribution-free and the parametric bootstrap is applied to deal with this problem. The performance of the resulting bootstrap test is investigated from an asymptotic point of view and by means of a simulation study. The results demonstrate that even for moderate sample sizes the parametric bootstrap provides a reliable and easy accessible solution to the problem of goodness-of-fit testing of assumptions regarding the error distribution in linear and nonparametric regression models.

Sprache
Englisch

Erschienen in
Series: Technical Report ; No. 2004,38

Thema
goodness-of-fit
residual process
parametric bootstrap
linear model
analysis of variance
M-estimation
nonparametric regression
Bootstrap-Verfahren
Nichtparametrisches Verfahren
Regression
Theorie

Ereignis
Geistige Schöpfung
(wer)
Nagel, Eva-Renate
Dette, Holger
Neumeyer, Natalie
Ereignis
Veröffentlichung
(wer)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(wo)
Dortmund
(wann)
2004

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Nagel, Eva-Renate
  • Dette, Holger
  • Neumeyer, Natalie
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Entstanden

  • 2004

Ähnliche Objekte (12)