Artikel

Asymptotic independence ex machina: Extreme value theory for the diagonal SRE model

We consider multivariate stationary processes (Xt) satisfying a stochastic recurrence equation of the form Xt=𝕄tXt−1+Qt, where (Qt) are i.i.d. random vectors and 𝕄t=Diag(b1+c1Mt,…,bd+cdMt) are i.i.d. diagonal matrices and (Mt) are i.i.d. random variables. We obtain a full characterization of the vector scaling regular variation properties of (Xt), proving that some coordinates Xt, i and Xt, j are asymptotically independent even though all coordinates rely on the same random input (Mt). We prove the asynchrony of extreme clusters among marginals with different tail indices. Our results are applied to some multivariate autoregressive conditional heteroskedastic (BEKK‐ARCH and CCC‐GARCH) processes and to log‐returns. Angular measure inference shows evidences of asymptotic independence among marginals of diagonal SRE with different tail indices.

Sprache
Englisch

Erschienen in
Journal: Journal of Time Series Analysis ; ISSN: 1467-9892 ; Volume: 43 ; Year: 2022 ; Issue: 5 ; Pages: 750-780 ; Oxford, UK: John Wiley & Sons, Ltd

Thema
Stochastic recurrence equations
multivariate ARCH
multivariate regular variation
non‐standard regular variation

Ereignis
Geistige Schöpfung
(wer)
Mentemeier, Sebastian
Wintenberger, Olivier
Ereignis
Veröffentlichung
(wer)
John Wiley & Sons, Ltd
(wo)
Oxford, UK
(wann)
2022

DOI
doi:10.1111/jtsa.12637
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Mentemeier, Sebastian
  • Wintenberger, Olivier
  • John Wiley & Sons, Ltd

Entstanden

  • 2022

Ähnliche Objekte (12)