Artikel
Asymptotic independence ex machina: Extreme value theory for the diagonal SRE model
We consider multivariate stationary processes (Xt) satisfying a stochastic recurrence equation of the form Xt=đtXtâ1+Qt, where (Qt) are i.i.d. random vectors and đt=Diag(b1+c1Mt,âŠ,bd+cdMt) are i.i.d. diagonal matrices and (Mt) are i.i.d. random variables. We obtain a full characterization of the vector scaling regular variation properties of (Xt), proving that some coordinates Xt,âi and Xt,âj are asymptotically independent even though all coordinates rely on the same random input (Mt). We prove the asynchrony of extreme clusters among marginals with different tail indices. Our results are applied to some multivariate autoregressive conditional heteroskedastic (BEKKâARCH and CCCâGARCH) processes and to logâreturns. Angular measure inference shows evidences of asymptotic independence among marginals of diagonal SRE with different tail indices.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Journal of Time Series Analysis ; ISSN: 1467-9892 ; Volume: 43 ; Year: 2022 ; Issue: 5 ; Pages: 750-780 ; Oxford, UK: John Wiley & Sons, Ltd
- Subject
-
Stochastic recurrence equations
multivariate ARCH
multivariate regular variation
nonâstandard regular variation
- Event
-
Geistige Schöpfung
- (who)
-
Mentemeier, Sebastian
Wintenberger, Olivier
- Event
-
Veröffentlichung
- (who)
-
John Wiley & Sons, Ltd
- (where)
-
Oxford, UK
- (when)
-
2022
- DOI
-
doi:10.1111/jtsa.12637
- Handle
- Last update
-
10.03.2025, 11:45 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek fĂŒr Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Mentemeier, Sebastian
- Wintenberger, Olivier
- John Wiley & Sons, Ltd
Time of origin
- 2022