Artikel

Asymptotic independence ex machina: Extreme value theory for the diagonal SRE model

We consider multivariate stationary processes (Xt) satisfying a stochastic recurrence equation of the form Xt=𝕄tXt−1+Qt, where (Qt) are i.i.d. random vectors and 𝕄t=Diag(b1+c1Mt,
,bd+cdMt) are i.i.d. diagonal matrices and (Mt) are i.i.d. random variables. We obtain a full characterization of the vector scaling regular variation properties of (Xt), proving that some coordinates Xt, i and Xt, j are asymptotically independent even though all coordinates rely on the same random input (Mt). We prove the asynchrony of extreme clusters among marginals with different tail indices. Our results are applied to some multivariate autoregressive conditional heteroskedastic (BEKK‐ARCH and CCC‐GARCH) processes and to log‐returns. Angular measure inference shows evidences of asymptotic independence among marginals of diagonal SRE with different tail indices.

Language
Englisch

Bibliographic citation
Journal: Journal of Time Series Analysis ; ISSN: 1467-9892 ; Volume: 43 ; Year: 2022 ; Issue: 5 ; Pages: 750-780 ; Oxford, UK: John Wiley & Sons, Ltd

Subject
Stochastic recurrence equations
multivariate ARCH
multivariate regular variation
non‐standard regular variation

Event
Geistige Schöpfung
(who)
Mentemeier, Sebastian
Wintenberger, Olivier
Event
Veröffentlichung
(who)
John Wiley & Sons, Ltd
(where)
Oxford, UK
(when)
2022

DOI
doi:10.1111/jtsa.12637
Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek fĂŒr Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Mentemeier, Sebastian
  • Wintenberger, Olivier
  • John Wiley & Sons, Ltd

Time of origin

  • 2022

Other Objects (12)