Arbeitspapier
Structural vector autoregressive analysis in a data rich environment: A survey
Large panels of variables are used by policy makers in deciding on policy actions. Therefore it is desirable to include large information sets in models for economic analysis. In this survey methods are reviewed for accounting for the information in large sets of variables in vector autoregressive (VAR) models. This can be done by aggregating the variables or by reducing the parameter space to a manageable dimension. Factor models reduce the space of variables whereas large Bayesian VAR models and panel VARs reduce the parameter space. Global VARs use a mixed approach. They aggregate the variables and use a parsimonious parametrisation. All these methods are discussed in this survey although the main emphasize is on factor models.
- Sprache
-
Englisch
- Erschienen in
-
Series: DIW Discussion Papers ; No. 1351
- Klassifikation
-
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- Thema
-
factor models
structural vector autoregressive model
global vector autoregression
panel data
Bayesian vector autoregression
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Lütkepohl, Helmut
- Ereignis
-
Veröffentlichung
- (wer)
-
Deutsches Institut für Wirtschaftsforschung (DIW)
- (wo)
-
Berlin
- (wann)
-
2014
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Lütkepohl, Helmut
- Deutsches Institut für Wirtschaftsforschung (DIW)
Entstanden
- 2014