Arbeitspapier

Testing identification via heteroskedasticity in structural vector autoregressive models

Tests for identification through heteroskedasticity in structural vector autoregressive analysis are developed for models with two volatility states where the time point of volatility change is known. The tests are Wald type tests for which only the unrestricted model including the covariance matrices of the two volatility states have to be estimated. The residuals of the model are assumed to be from the class of elliptical distributions which includes Gaussian models. The asymptotic null distributions of the test statistics are derived and simulations are used to explore their small sample properties. Two empirical examples illustrate the usefulness of the tests.

Language
Englisch

Bibliographic citation
Series: DIW Discussion Papers ; No. 1764

Classification
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Subject
heteroskedasticity
structural identification
vector autoregressive process

Event
Geistige Schöpfung
(who)
Lütkepohl, Helmut
Meitz, Mika
Netšunajev, Aleksei
Saikkonen, Pentti
Event
Veröffentlichung
(who)
Deutsches Institut für Wirtschaftsforschung (DIW)
(where)
Berlin
(when)
2018

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Lütkepohl, Helmut
  • Meitz, Mika
  • Netšunajev, Aleksei
  • Saikkonen, Pentti
  • Deutsches Institut für Wirtschaftsforschung (DIW)

Time of origin

  • 2018

Other Objects (12)