Artikel

Testing identification via heteroskedasticity in structural vector autoregressive models

Tests for identification through heteroskedasticity in structural vector autoregressive analysis are developed for models with two volatility states where the time point of volatility change is known. The tests are Wald-type tests for which only the unrestricted model, including the covariance matrices of the two volatility states, has to be estimated. The residuals of the model are assumed to be from the class of elliptical distributions, which includes Gaussian models. The asymptotic null distributions of the test statistics are derived, and simulations are used to explore their small-sample properties. Two empirical examples illustrate the usefulness of the tests in applied work.

Sprache
Englisch

Erschienen in
Journal: The Econometrics Journal ; ISSN: 1368-4221 ; Volume: 24 ; Year: 2021 ; Issue: 1 ; Pages: 1-22 ; Oxford: Oxford University Press

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

Ereignis
Geistige Schöpfung
(wer)
Lütkepohl, Helmut
Meitz, Mika
Netšunajev, Aleksei
Saikkonen, Pentti
Ereignis
Veröffentlichung
(wer)
Oxford University Press
(wo)
Oxford
(wann)
2021

DOI
doi:10.1093/ectj/utaa008
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Lütkepohl, Helmut
  • Meitz, Mika
  • Netšunajev, Aleksei
  • Saikkonen, Pentti
  • Oxford University Press

Entstanden

  • 2021

Ähnliche Objekte (12)