Arbeitspapier

Intraday Stochastic Volatility in Discrete Price Changes: the Dynamic Skellam Model

We introduce a dynamic Skellam model that measures stochastic volatility from high-frequency tick-by-tick discrete stock price changes. The likelihood function for our model is analytically intractable and requires Monte Carlo integration methods for its numerical evaluation. The proposed methodology is applied to tick-by-tick data of four stocks traded on the New York Stock Exchange. We require fast simulation methods for likelihood evaluation since the number of observations per series per day varies from 1000 to 10,000. Complexities in the intraday dynamics of volatility and in the frequency of trades without price impact require further non-trivial adjustments to the dynamic Skellam model. In-sample residual diagnostics and goodness-of-fit statistics show that the final model provides a good fit to the data. An extensive forecasting study of intraday volatility shows that the dynamic modified Skellam model provides accurate forecasts compared to alternative modeling approaches.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 15-076/IV/DSF94

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Financial Econometrics
Thema
non-Gaussian time series models
volatility models
importance sampling
numerical integration
high-frequency data
discrete price changes.

Ereignis
Geistige Schöpfung
(wer)
Koopman, Siem Jan
Lit, Rutger
Lucas, Andre
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2015

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Koopman, Siem Jan
  • Lit, Rutger
  • Lucas, Andre
  • Tinbergen Institute

Entstanden

  • 2015

Ähnliche Objekte (12)