Arbeitspapier

Asymmetric Stable Stochastic Volatility Models: Estimation, Filtering, and Forecasting

This paper considers a stochastic volatility model featuring an asymmetric stable error distribution and a novel way of accounting for the leverage effect. We adopt simulation-based methods to address key challenges in parameter estimation, the filtering of time-varying volatility, and volatility forecasting. Specifically, we make use of the indirect inference method to estimate the static parameters, and the extremum Monte Carlo method to extract latent volatility. Both methods can be easily adapted to modifications of the model, such as having other distributions for the errors and other dynamic specifications for the volatility process. Illustrations are presented for a simulated dataset and for an empirical application to a time series of Bitcoin returns.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2023-077/III

Klassifikation
Wirtschaft
Thema
Filtering
Forecasting
Indirect Inference
Extremum Monte Carlo
Leverage
Bitcoin

Ereignis
Geistige Schöpfung
(wer)
Blasques, Francisco
Koopman, Siem Jan
Moussa, Karim
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Blasques, Francisco
  • Koopman, Siem Jan
  • Moussa, Karim
  • Tinbergen Institute

Entstanden

  • 2023

Ähnliche Objekte (12)