Arbeitspapier

Asymmetric Stable Stochastic Volatility Models: Estimation, Filtering, and Forecasting

This paper considers a stochastic volatility model featuring an asymmetric stable error distribution and a novel way of accounting for the leverage effect. We adopt simulation-based methods to address key challenges in parameter estimation, the filtering of time-varying volatility, and volatility forecasting. Specifically, we make use of the indirect inference method to estimate the static parameters, and the extremum Monte Carlo method to extract latent volatility. Both methods can be easily adapted to modifications of the model, such as having other distributions for the errors and other dynamic specifications for the volatility process. Illustrations are presented for a simulated dataset and for an empirical application to a time series of Bitcoin returns.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. TI 2023-077/III

Classification
Wirtschaft
Subject
Filtering
Forecasting
Indirect Inference
Extremum Monte Carlo
Leverage
Bitcoin

Event
Geistige Schöpfung
(who)
Blasques, Francisco
Koopman, Siem Jan
Moussa, Karim
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2023

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Blasques, Francisco
  • Koopman, Siem Jan
  • Moussa, Karim
  • Tinbergen Institute

Time of origin

  • 2023

Other Objects (12)