Semantic fault localization and suspiciousness ranking
Abstract: Static program analyzers are increasingly effective in checking correctness properties of programs and reporting any errors found, often in the form of error traces. However, developers still spend a significant amount of time on debugging. This involves processing long error traces in an effort to localize a bug to a relatively small part of the program and to identify its cause. In this paper, we present a technique for automated fault localization that, given a program and an error trace, efficiently narrows down the cause of the error to a few statements. These statements are then ranked in terms of their suspiciousness. Our technique relies only on the semantics of the given program and does not require any test cases or user guidance. In experiments on a set of C benchmarks, we show that our technique is effective in quickly isolating the cause of error while out-performing other state-of-the-art fault-localization techniques
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Tools and algorithms for the construction and analysis of systems. - Cham, 2019. - 226-243, ISBN: 9783030174613
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2021
- Urheber
-
Christakis, Maria
Heizmann, Matthias
Mansur, Muhammad Numair
Schilling, Christian
Wüstholz, Valentin Tobias
- Beteiligte Personen und Organisationen
- DOI
-
10.1007/978-3-030-17462-0_13
- URN
-
urn:nbn:de:bsz:25-freidok-1761481
- Rechteinformation
-
Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:21 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Christakis, Maria
- Heizmann, Matthias
- Mansur, Muhammad Numair
- Schilling, Christian
- Wüstholz, Valentin Tobias
- Albert-Ludwigs-Universität Freiburg. Softwaretechnik
- Universität
Entstanden
- 2021