Detect influential points of feature rankings
Abstract: Background
Feature rankings are crucial in bioinformatics but can be distorted by influential points (IPs), which are often overlooked. This study aims to investigate the impact of IPs on feature rankings and propose IPs detection method
Method
We use a leave-one-out approach to assess each case's influence on feature rankings by comparing rank changes after its removal. The rank changes are measured by a novel rank comparison method that involves using adaptive top-prioritized weights that are adjustable to the distribution of rank changes. Our IP detection method was evaluated on several public datasets.
Results
Our method identified potential IPs in several TCGA gene expression datasets, revealing that IPs can severely distort feature rankings. These rank changes can ultimately affect subsequent analyses such as enriched pathways, suggesting the necessity of IPs detection when deriving feature rankings.
Conclusions
IPs significantly impact feature rankings and subsequent analyses; routine IP detection is necessary yet underutilized. Our method is available in the R package findIPs
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Notes
-
Computational biology and chemistry. - 115 (2025) , 108339, ISSN: 1476-9271
- Classification
-
Wirtschaft
- DOI
-
10.1016/j.compbiolchem.2024.108339
- URN
-
urn:nbn:de:bsz:25-freidok-2624598
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:36 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Wang, Shuo
- Lu, Junyan
- Universität
Time of origin
- 2025