Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis
Abstract R = R = R = R = R = R n/R s T a T a R n/R s W s R n/R s is also effective. Random cross-validation showed higher model accuracy than spatial cross-validation and temporal cross-validation, but spatial cross-validation is more important in spatial extrapolation. The findings of this study are promising to guide future research on such machine-learning-based modeling.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis ; volume:26 ; number:18 ; year:2022 ; pages:4603-4618 ; extent:16
Hydrology and earth system sciences ; 26, Heft 18 (2022), 4603-4618 (gesamt 16)
- Urheber
-
Shi, Haiyang
Luo, Geping
Hellwich, Olaf
Xie, Mingjuan
Zhang, Chen
Zhang, Yu
Wang, Yuangang
Yuan, Xiuliang
Ma, Xiaofei
Zhang, Wenqiang
Kurban, Alishir
Maeyer, Philippe de
Van de Voorde, Tim
- DOI
-
10.5194/hess-26-4603-2022
- URN
-
urn:nbn:de:101:1-2022092205223552603965
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:37 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Shi, Haiyang
- Luo, Geping
- Hellwich, Olaf
- Xie, Mingjuan
- Zhang, Chen
- Zhang, Yu
- Wang, Yuangang
- Yuan, Xiuliang
- Ma, Xiaofei
- Zhang, Wenqiang
- Kurban, Alishir
- Maeyer, Philippe de
- Van de Voorde, Tim