Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis

Abstract R = R = R = R = R = R n/R s T a T a R n/R s W s R n/R s is also effective. Random cross-validation showed higher model accuracy than spatial cross-validation and temporal cross-validation, but spatial cross-validation is more important in spatial extrapolation. The findings of this study are promising to guide future research on such machine-learning-based modeling.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis ; volume:26 ; number:18 ; year:2022 ; pages:4603-4618 ; extent:16
Hydrology and earth system sciences ; 26, Heft 18 (2022), 4603-4618 (gesamt 16)

Creator
Shi, Haiyang
Luo, Geping
Hellwich, Olaf
Xie, Mingjuan
Zhang, Chen
Zhang, Yu
Wang, Yuangang
Yuan, Xiuliang
Ma, Xiaofei
Zhang, Wenqiang
Kurban, Alishir
Maeyer, Philippe de
Van de Voorde, Tim

DOI
10.5194/hess-26-4603-2022
URN
urn:nbn:de:101:1-2022092205223552603965
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
05.08.2027, 12:20 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Shi, Haiyang
  • Luo, Geping
  • Hellwich, Olaf
  • Xie, Mingjuan
  • Zhang, Chen
  • Zhang, Yu
  • Wang, Yuangang
  • Yuan, Xiuliang
  • Ma, Xiaofei
  • Zhang, Wenqiang
  • Kurban, Alishir
  • Maeyer, Philippe de
  • Van de Voorde, Tim

Other Objects (12)