Ambulatory seizure forecasting with a wrist-worn device using long-short term memory deep learning

Abstract: The ability to forecast seizures minutes to hours in advance of an event has been verified using invasive EEG devices, but has not been previously demonstrated using noninvasive wearable devices over long durations in an ambulatory setting. In this study we developed a seizure forecasting system with a long short-term memory (LSTM) recurrent neural network (RNN) algorithm, using a noninvasive wrist-worn research-grade physiological sensor device, and tested the system in patients with epilepsy in the field, with concurrent invasive EEG confirmation of seizures via an implanted recording device. The system achieved forecasting performance significantly better than a random predictor for 5 of 6 patients studied, with mean AUC-ROC of 0.80 (range 0.72–0.92). These results provide the first clear evidence that direct seizure forecasts are possible using wearable devices in the ambulatory setting for many patients with epilepsy

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Scientific reports. - 11, 1 (2021) , 21935, ISSN: 2045-2322

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2021
Urheber
Nasseri, Mona
Pal Attia, Tal
Joseph, Boney
Gregg, Nicholas M.
Nurse, Ewan S.
Viana, Pedro F.
Worrell, Greg A.
Dümpelmann, Matthias
Richardson, Mark P.
Freestone, Dean R.
Brinkmann, Benjamin H.

DOI
10.1038/s41598-021-01449-2
URN
urn:nbn:de:bsz:25-freidok-2226955
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Nasseri, Mona
  • Pal Attia, Tal
  • Joseph, Boney
  • Gregg, Nicholas M.
  • Nurse, Ewan S.
  • Viana, Pedro F.
  • Worrell, Greg A.
  • Dümpelmann, Matthias
  • Richardson, Mark P.
  • Freestone, Dean R.
  • Brinkmann, Benjamin H.
  • Universität

Entstanden

  • 2021

Ähnliche Objekte (12)