Ambulatory seizure forecasting with a wrist-worn device using long-short term memory deep learning

Abstract: The ability to forecast seizures minutes to hours in advance of an event has been verified using invasive EEG devices, but has not been previously demonstrated using noninvasive wearable devices over long durations in an ambulatory setting. In this study we developed a seizure forecasting system with a long short-term memory (LSTM) recurrent neural network (RNN) algorithm, using a noninvasive wrist-worn research-grade physiological sensor device, and tested the system in patients with epilepsy in the field, with concurrent invasive EEG confirmation of seizures via an implanted recording device. The system achieved forecasting performance significantly better than a random predictor for 5 of 6 patients studied, with mean AUC-ROC of 0.80 (range 0.72–0.92). These results provide the first clear evidence that direct seizure forecasts are possible using wearable devices in the ambulatory setting for many patients with epilepsy

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Scientific reports. - 11, 1 (2021) , 21935, ISSN: 2045-2322

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2021
Creator
Nasseri, Mona
Pal Attia, Tal
Joseph, Boney
Gregg, Nicholas M.
Nurse, Ewan S.
Viana, Pedro F.
Worrell, Greg A.
Dümpelmann, Matthias
Richardson, Mark P.
Freestone, Dean R.
Brinkmann, Benjamin H.

DOI
10.1038/s41598-021-01449-2
URN
urn:nbn:de:bsz:25-freidok-2226955
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:41 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Nasseri, Mona
  • Pal Attia, Tal
  • Joseph, Boney
  • Gregg, Nicholas M.
  • Nurse, Ewan S.
  • Viana, Pedro F.
  • Worrell, Greg A.
  • Dümpelmann, Matthias
  • Richardson, Mark P.
  • Freestone, Dean R.
  • Brinkmann, Benjamin H.
  • Universität

Time of origin

  • 2021

Other Objects (12)