Linking PIAAC Data to Individual Administrative Data: Insights from a German Pilot Project
Abstract: Linking survey data to administrative data offers researchers many opportunities. In particular, it enables them to enrich survey data with additional information without increasing the burden on respondents. German PIAAC data on individual skills, for example, can be combined with administrative data on individual employment histories. However, as the linkage of survey data with administrative data records requires the consent of respondents, there may be bias in the linked dataset if only a subsample of respondents - for example, high-educated individuals - give their consent. The present chapter provides an overview of the pilot project about linking the German PIAAC data with individual administrative data. In a first step, we illustrate characteristics of the linkable datasets and describe the linkage process and its methodological challenges. In a second step, we provide an illustrative example of the use of the linked data and investigate how the skills assessed in PIAAC are
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource, 271-290 S.
- Sprache
-
Englisch
- Anmerkungen
-
Veröffentlichungsversion
begutachtet
In: Maehler, Débora B. (Hg.), Rammstedt, Beatrice (Hg.): Large-Scale Cognitive Assessment: Analyzing PIAAC Data. 2020. S. 271-290. ISBN 978-3-030-47515-4
- Klassifikation
-
Wirtschaft
- Ereignis
-
Veröffentlichung
- (wo)
-
Mannheim, Cham
- (wer)
-
SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V., Springer
- (wann)
-
2020
- Urheber
-
Daikeler, Jessica
Gauly, Britta
Rosenthal, Matthias
- Beteiligte Personen und Organisationen
-
Maehler, Débora B.
Rammstedt, Beatrice
- DOI
-
10.1007/978-3-030-47515-4_11
- URN
-
urn:nbn:de:101:1-2021102113571895070897
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:49 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Daikeler, Jessica
- Gauly, Britta
- Rosenthal, Matthias
- Maehler, Débora B.
- Rammstedt, Beatrice
- SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V., Springer
Entstanden
- 2020