Arbeitspapier

Maximum Likelihood Estimation of a Noninvertible ARMA Model with Autoregressive Conditional Heteroskedasticity

We consider maximum likelihood estimation of a particular noninvertible ARMA model with autoregressive conditionally heteroskedastic (ARCH) errors. The model can be seen as an extension to so-called all-pass models in that it allows for autocorrelation and for more fl exible forms of conditional heteroskedasticity. These features may be attractive especially in economic and financial applications. Unlike in previous literature on maximum likelihood estimation of noncausal and/or noninvertible ARMA models and all-pass models, our estimation theory does allow for Gaussian innovations. We give conditions under which a strongly consistent and asymptotically normally distributed solution to the likelihood equations exists, and we also provide a consistent estimator of the limiting covariance matrix.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 1226

Classification
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Construction and Estimation
Subject
maximum likelihood estimation
autoregressive moving average
ARMA
autoregressive conditional heteroskedasticity
ARCH
noninvertible
noncausal
all-pass
nonminimum phase
Maximum-Likelihood-Schätzung
ARMA-Modell
Heteroskedastizität
Theorie

Event
Geistige Schöpfung
(who)
Meitz, Mika
Saikkonen, Pentti
Event
Veröffentlichung
(who)
Koç University-TÜSİAD Economic Research Forum (ERF)
(where)
Istanbul
(when)
2012

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Meitz, Mika
  • Saikkonen, Pentti
  • Koç University-TÜSİAD Economic Research Forum (ERF)

Time of origin

  • 2012

Other Objects (12)