Arbeitspapier
Numerical solution of dynamic equilibrium models under Poisson uncertainty
We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations of the retarded type. We apply the Waveform Relaxation algorithm, i.e., we provide a guess of the policy function and solve the resulting system of (deterministic) ordinary differential equations by standard techniques. For parametric restrictions, analytical solutions to the stochastic growth model and a novel solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households.
- Language
-
Englisch
- Bibliographic citation
-
Series: CESifo Working Paper ; No. 3431
- Classification
-
Wirtschaft
Computational Techniques; Simulation Modeling
Macroeconomics: Consumption; Saving; Wealth
One, Two, and Multisector Growth Models
- Subject
-
continuous-time DSGE
Poisson uncertainty
waveform relaxation
Dynamisches Gleichgewicht
Kontrolltheorie
Stochastischer Prozess
Algorithmus
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Posch, Olaf
Trimborn, Timo
- Event
-
Veröffentlichung
- (who)
-
Center for Economic Studies and ifo Institute (CESifo)
- (where)
-
Munich
- (when)
-
2011
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Posch, Olaf
- Trimborn, Timo
- Center for Economic Studies and ifo Institute (CESifo)
Time of origin
- 2011