Arbeitspapier
Numerical solution of continuous-time DSGE models under poisson uncertainty
We propose a simple and powerful method for determining the transition process in continuous-time DSGE models under Poisson uncertainty numerically. The idea is to transform the system of stochastic differential equations into a system of functional differential equations of the retarded type. We then use the Waveform Relaxation algorithm to provide a guess of the policy function and solve the resulting system of ordinary differential equations by standard methods and fix-point iteration. Analytical solutions are provided as a benchmark from which our numerical method can be used to explore broader classes of models. We illustrate the algorithm simulating both the stochastic neoclassical growth model and the Lucas model under Poisson uncertainty which is motivated by the Barro-Rietz rare disaster hypothesis. We find that, even for non-linear policy functions, the maximum (absolute) error is very small.
- Sprache
-
Englisch
- Erschienen in
-
Series: Diskussionsbeitrag ; No. 450
- Klassifikation
-
Wirtschaft
Macroeconomics: Consumption; Saving; Wealth
Portfolio Choice; Investment Decisions
One, Two, and Multisector Growth Models
- Thema
-
Continuous-time DSGE
Optimal stochastic control
Waveform Relaxation
Dynamisches Gleichgewicht
Kontrolltheorie
Stochastischer Prozess
Algorithmus
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Posch, Olaf
Trimborn, Timo
- Ereignis
-
Veröffentlichung
- (wer)
-
Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät
- (wo)
-
Hannover
- (wann)
-
2010
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Posch, Olaf
- Trimborn, Timo
- Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät
Entstanden
- 2010