Arbeitspapier

A Probabilistic Solution to High-Dimensional Continuous-Time Macro and Finance Models

This paper introduces the probabilistic formulation of continuous-time economic models: forward stochastic differential equations (SDE) govern the dynamics of backward-looking variables, and backward SDEs capture that of forward-looking variables. Deep learning streamlines the search for the probabilistic solution, which is less sensitive to the "curse of dimensionality." The paper proposes a straightforward algorithm and assesses its accuracy by considering a multiple-country model with an explicit solution under symmetric states. Combining with the finite volume method, the algorithm can obtain global dynamics of heterogeneous-agent models with aggregate shocks, in which agents consider the distribution of individual states as a state variable.

Sprache
Englisch

Erschienen in
Series: CESifo Working Paper ; No. 10600

Klassifikation
Wirtschaft
Computational Techniques; Simulation Modeling
Banks; Depository Institutions; Micro Finance Institutions; Mortgages
Financial Markets and the Macroeconomy
Thema
backward stochastic differential equation
deep reinforcement learning
the curse of dimensionality
heterogeneous-agent continuous-time model
finite volume method

Ereignis
Geistige Schöpfung
(wer)
Huang, Ji
Ereignis
Veröffentlichung
(wer)
Center for Economic Studies and ifo Institute (CESifo)
(wo)
Munich
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:46 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Huang, Ji
  • Center for Economic Studies and ifo Institute (CESifo)

Entstanden

  • 2023

Ähnliche Objekte (12)