Arbeitspapier
A Probabilistic Solution to High-Dimensional Continuous-Time Macro and Finance Models
This paper introduces the probabilistic formulation of continuous-time economic models: forward stochastic differential equations (SDE) govern the dynamics of backward-looking variables, and backward SDEs capture that of forward-looking variables. Deep learning streamlines the search for the probabilistic solution, which is less sensitive to the "curse of dimensionality." The paper proposes a straightforward algorithm and assesses its accuracy by considering a multiple-country model with an explicit solution under symmetric states. Combining with the finite volume method, the algorithm can obtain global dynamics of heterogeneous-agent models with aggregate shocks, in which agents consider the distribution of individual states as a state variable.
- Sprache
-
Englisch
- Erschienen in
-
Series: CESifo Working Paper ; No. 10600
- Klassifikation
-
Wirtschaft
Computational Techniques; Simulation Modeling
Banks; Depository Institutions; Micro Finance Institutions; Mortgages
Financial Markets and the Macroeconomy
- Thema
-
backward stochastic differential equation
deep reinforcement learning
the curse of dimensionality
heterogeneous-agent continuous-time model
finite volume method
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Huang, Ji
- Ereignis
-
Veröffentlichung
- (wer)
-
Center for Economic Studies and ifo Institute (CESifo)
- (wo)
-
Munich
- (wann)
-
2023
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:46 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Huang, Ji
- Center for Economic Studies and ifo Institute (CESifo)
Entstanden
- 2023