Explicit and implicit belief-based gender discrimination: a hiring experiment

Abstract: Understanding discrimination is key for designing policy interventions that promote equality in society. Economists have studied the topic intensively, typically taxonomizing discrimination as either taste-based or (accurate) statistical discrimination. To enrich this taxonomy, we design a hiring experiment that rules out both of these sources of discrimination along the gender dimension. Yet, we still detect substantial discrimination against women. We provide evidence of two forms of discrimination, explicit and implicit belief-based discrimination. Both rely on statistically inaccurate beliefs but differ in how clearly they reveal the decision-maker's gender bias. Our analysis highlights the central role played by contextual features of the choice environment in determining whether and how discrimination will manifest. We conclude by discussing how policy makers may design effective regulation to address specific forms of discrimination

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource, 38 S.
Language
Englisch
Notes
Veröffentlichungsversion
begutachtet

Bibliographic citation
Discussion Papers / Wissenschaftszentrum Berlin für Sozialforschung, Forschungsschwerpunkt Markt und Entscheidung, Abteilung Ökonomik des Wandels ; Bd. SP II 2020-306

Classification
Wirtschaft

Event
Veröffentlichung
(where)
Mannheim
(who)
SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
(when)
2020
Event
Veröffentlichung
(where)
Berlin
(who)
Wissenschaftszentrum Berlin für Sozialforschung gGmbH
(when)
2020
Creator
Barron, Kai
Ditlmann, Ruth
Gehrig, Stefan
Schweighofer-Kodritsch, Sebastian
Contributor
Wissenschaftszentrum Berlin für Sozialforschung gGmbH

URN
urn:nbn:de:101:1-2022020211315143884235
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:43 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Barron, Kai
  • Ditlmann, Ruth
  • Gehrig, Stefan
  • Schweighofer-Kodritsch, Sebastian
  • Wissenschaftszentrum Berlin für Sozialforschung gGmbH
  • SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.

Time of origin

  • 2020

Other Objects (12)