Arbeitspapier

Non-Bayesian testing of a stochastic prediction

We propose a method to test a prediction of the distribution of a stochastic process. In a non-Bayesian non-parametric setting, a predicted distribution is tested using a realization of the stochastic process. A test associates a set of realizations for each predicted distribution, on which the prediction passes. So that there are no type I errors, a prediction assigns probability 1 to its test set. Nevertheless, these sets are .small., in the sense that .most.distributions assign it probability 0, and hence there are .few. type II errors. It is also shown that there exists such a test that cannot be manipulated, in the sense that an uninformed predictor who is pretending to know the true distribution is guaranteed to fail on an uncountable number of realizations, no matter what randomized prediction he employs. The notion of a small set we use is category I, described in more detail in the paper.

Sprache
Englisch

Erschienen in
Series: Discussion Paper ; No. 1418

Klassifikation
Wirtschaft
Thema
Stochastischer Prozess
Statistischer Test
Wahrscheinlichkeitsrechnung
Theorie

Ereignis
Geistige Schöpfung
(wer)
Dekel, Eddie
Feinberg, Yossi
Ereignis
Veröffentlichung
(wer)
Northwestern University, Kellogg School of Management, Center for Mathematical Studies in Economics and Management Science
(wo)
Evanston, IL
(wann)
2005

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Dekel, Eddie
  • Feinberg, Yossi
  • Northwestern University, Kellogg School of Management, Center for Mathematical Studies in Economics and Management Science

Entstanden

  • 2005

Ähnliche Objekte (12)