Electron beam effects on oxide thin films - structure and electrical property correlations
Abstract: In situ transmission electron microscope (TEM) characterization techniques provide valuable information on structure–property correlations to understand the behavior of materials at the nanoscale. However, understanding nanoscale structures and their interaction with the electron beam is pivotal for the reliable interpretation of in situ/ex situ TEM studies. Here, we report that oxides commonly used in nanoelectronic applications, such as transistor gate oxides or memristive devices, are prone to electron beam induced damage that causes small structural changes even under very low dose conditions, eventually changing their electrical properties as examined via in situ measurements.
In this work, silicon, titanium, and niobium oxide thin films are used for in situ TEM electrical characterization studies. The electron beam induced reduction of the oxides turns these insulators into conductors. The conductivity change is reversible by exposure to
air, supporting the idea of electron beam reduction of oxides as primary damage mechanism. Through these measurements we propose a limit for the critical dose to be considered for in situ scanning electron microscopy and TEM characterization studies
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Microscopy and microanalysis. - 25, 3 (2019) , 592-600, ISSN: 1431-9276
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2020
- Urheber
-
Neelisetty, Krishna Kanth
Mu, Xiaoke
Gutsch, Sebastian
Vahl, Alexander
Molinari, Alan
Von Seggern, Falk
Hansen, Mirko
Scherer, Torsten
Zacharias, Margit
Kienle, Lorenz
Chakravadhanula, Venkata Sai Kiran
Kübel, Christian
- Beteiligte Personen und Organisationen
- DOI
-
10.1017/s1431927619000175
- URN
-
urn:nbn:de:bsz:25-freidok-1538015
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:28 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Neelisetty, Krishna Kanth
- Mu, Xiaoke
- Gutsch, Sebastian
- Vahl, Alexander
- Molinari, Alan
- Von Seggern, Falk
- Hansen, Mirko
- Scherer, Torsten
- Zacharias, Margit
- Kienle, Lorenz
- Chakravadhanula, Venkata Sai Kiran
- Kübel, Christian
- Albert-Ludwigs-Universität Freiburg. Professur für Nanotechnologie
- Universität
Entstanden
- 2020