Arbeitspapier

Optimal Data Collection for Randomized Control Trials

In a randomized control trial, the precision of an average treatment effect estimator can be improved either by collecting data on additional individuals, or by collecting additional covariates that predict the outcome variable. We propose the use of pre-experimental data such as a census, or a household survey, to inform the choice of both the sample size and the covariates to be collected. Our procedure seeks to minimize the resulting average treatment effect estimator's mean squared error, subject to the researcher's budget constraint. We rely on a modification of an orthogonal greedy algorithm that is conceptually simple and easy to implement in the presence of a large number of potential covariates, and does not require any tuning parameters. In two empirical applications, we show that our procedure can lead to substantial gains of up to 58%, measured either in terms of reductions in data collection costs or in terms of improvements in the precision of the treatment effect estimator.

Language
Englisch

Bibliographic citation
Series: IZA Discussion Papers ; No. 9908

Classification
Wirtschaft
Large Data Sets: Modeling and Analysis
Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
Subject
randomized control trials
big data
data collection
optimal survey design
orthogonal greedy algorithm
survey costs

Event
Geistige Schöpfung
(who)
Carneiro, Pedro
Lee, Sokbae
Wilhelm, Daniel
Event
Veröffentlichung
(who)
Institute for the Study of Labor (IZA)
(where)
Bonn
(when)
2016

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Carneiro, Pedro
  • Lee, Sokbae
  • Wilhelm, Daniel
  • Institute for the Study of Labor (IZA)

Time of origin

  • 2016

Other Objects (12)