Arbeitspapier

Optimal data collection for randomized control trials

In a randomized control trial, the precision of an average treatment effect estimator and the power of the corresponding t-test can be improved either by collecting data on additional individuals, or by collecting additional covariates that predict the outcome variable. To design the experiment, a researcher needs to solve this tradeoff subject to her budget constraint. We show that this optimization problem is equivalent to optimally predicting outcomes by the covariates, which in turn can be solved using existing machine learning techniques using pre-experimental data such as other similar studies, a census, or a household survey. In two empirical applications, we show that our procedure can lead to reductions of up to 58% in the costs of data collection, or improvements of the same magnitude in the precision of the treatment effect estimator.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP21/19

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Carneiro, Pedro M.
Lee, Sokbae
Wilhelm, Daniel
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2019

DOI
doi:10.1920/wp.cem.2019.2119
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Carneiro, Pedro M.
  • Lee, Sokbae
  • Wilhelm, Daniel
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2019

Ähnliche Objekte (12)