Arbeitspapier
Attrition in Randomized Control Trials: Using Tracking Information to Correct Bias
This paper starts from a review of RCT studies in development economics, and documents many studies largely ignore attrition once attrition rates are found balanced between treatment arms. The paper analyzes the implications of attrition for the internal and external validity of the results of a randomized experiment with balanced attrition rates, and proposes a new method to correct for attrition bias. We rely on a 10-years longitudinal data set with a final attrition rate of 10 percent, obtained after intensive tracking of migrants, and document the sensitivity of ITT estimates for schooling gains and labour market outcomes for a social program in Nicaragua. We find that not including those found during the intensive tracking leads to an overestimate of the ITT effects for the target population by more than 35 percent, and that selection into attrition is driven by observable baseline characteristics. We propose to correct for attrition using inverse probability weighting with estimates of weights that exploit the similarities between missing individuals and those found during an intensive tracking phase. We compare these estimates with alternative strategies using regression adjustment, standard weights, bounds or proxy information.
- Language
-
Englisch
- Bibliographic citation
-
Series: IZA Discussion Papers ; No. 10711
- Classification
-
Wirtschaft
Field Experiments
Model Evaluation, Validation, and Selection
- Subject
-
survey non response
sample selectivity
randomized controlled trial
inverse probability weights
- Event
-
Geistige Schöpfung
- (who)
-
Molina Millán, Teresa
Macours, Karen
- Event
-
Veröffentlichung
- (who)
-
Institute of Labor Economics (IZA)
- (where)
-
Bonn
- (when)
-
2017
- Handle
- Last update
-
10.03.2025, 11:45 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Molina Millán, Teresa
- Macours, Karen
- Institute of Labor Economics (IZA)
Time of origin
- 2017