Arbeitspapier

Forecasting limit order book liquidity supply-demand curves with functional AutoRegressive dynamics

Limit order book contains comprehensive information of liquidity on bid and ask sides. We propose a Vector Functional AutoRegressive (VFAR) model to describe the dynamics of the limit order book and demand curves and utilize the tted model to predict the joint evolution of the liquidity demand and supply curves. In the VFAR framework, we derive a closed-form maximum likelihood estimator under sieves and provide the asymptotic consistency of the estimator. In application to limit order book records of 12 stocks in NASDAQ traded from 2 Jan 2015 to 6 Mar 2015, it shows the VAR model presents a strong predictability in liquidity curves, with R2 values as high as 98.5 percent for insample estimation and 98.2 percent in out-of-sample forecast experiments. It produces accurate 5-, 25- and 50- minute forecasts, with root mean squared error as low as 0.09 to 0.58 and mean absolute percentage error as low as 0.3 to 4.5 percent

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2016-025

Klassifikation
Wirtschaft
Estimation: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Thema
limit order book
Liquidity risk
multiple functional time series

Ereignis
Geistige Schöpfung
(wer)
Chen, Ying
Chua, Wee Song
Härdle, Wolfgang Karl
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2016

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chen, Ying
  • Chua, Wee Song
  • Härdle, Wolfgang Karl
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2016

Ähnliche Objekte (12)