Predicting ocean-induced ice-shelf melt rates using deep learning

Abstract m yr - 1 compared to the ocean model. MELTNET calculates melt rates several orders of magnitude faster than the ocean model and outperforms more traditional parameterisations for >  96 % of geometries tested. Furthermore, we find MELTNET's melt rate estimates show sensitivity to established physical relationships such as changes in thermal forcing and ice-shelf slope. This study demonstrates the potential for a deep learning framework to calculate melt rates with almost no computational expense, which could in the future be used in conjunction with an ice sheet model to provide predictions for large-scale ice sheet models.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Predicting ocean-induced ice-shelf melt rates using deep learning ; volume:17 ; number:2 ; year:2023 ; pages:499-518 ; extent:20
The Cryosphere ; 17, Heft 2 (2023), 499-518 (gesamt 20)

Urheber
Rosier, Sebastian
Bull, Christopher Y. S.
Woo, Wai L.
Gudmundsson, G. Hilmar

DOI
10.5194/tc-17-499-2023
URN
urn:nbn:de:101:1-2023033007243588423650
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:54 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)