Predicting ocean-induced ice-shelf melt rates using deep learning

Abstract m yr - 1 compared to the ocean model. MELTNET calculates melt rates several orders of magnitude faster than the ocean model and outperforms more traditional parameterisations for >  96 % of geometries tested. Furthermore, we find MELTNET's melt rate estimates show sensitivity to established physical relationships such as changes in thermal forcing and ice-shelf slope. This study demonstrates the potential for a deep learning framework to calculate melt rates with almost no computational expense, which could in the future be used in conjunction with an ice sheet model to provide predictions for large-scale ice sheet models.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Predicting ocean-induced ice-shelf melt rates using deep learning ; volume:17 ; number:2 ; year:2023 ; pages:499-518 ; extent:20
The Cryosphere ; 17, Heft 2 (2023), 499-518 (gesamt 20)

Creator
Rosier, Sebastian
Bull, Christopher Y. S.
Woo, Wai L.
Gudmundsson, G. Hilmar

DOI
10.5194/tc-17-499-2023
URN
urn:nbn:de:101:1-2023033007243588423650
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:54 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)