Short-term multi-step-ahead sector-based traffic flow prediction based on the attention-enhanced graph convolutional LSTM network (AGC-LSTM)

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
1 Online-Ressource.
Language
Englisch

Bibliographic citation
Short-term multi-step-ahead sector-based traffic flow prediction based on the attention-enhanced graph convolutional LSTM network (AGC-LSTM) ; day:7 ; month:5 ; year:2024 ; pages:1-20
Neural computing & applications ; (7.5.2024), 1-20

Classification
Wirtschaft

Creator
Zhang, Ying
Xu, Shimin
Zhang, Linghui
Jiang, Weiwei
Alam, Sameer
Xue, Dabin
Contributor
SpringerLink (Online service)

DOI
10.1007/s00521-024-09827-3
URN
urn:nbn:de:101:1-2407291126589.608616045242
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:46 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Zhang, Ying
  • Xu, Shimin
  • Zhang, Linghui
  • Jiang, Weiwei
  • Alam, Sameer
  • Xue, Dabin
  • SpringerLink (Online service)

Other Objects (12)