Short-term multi-step-ahead sector-based traffic flow prediction based on the attention-enhanced graph convolutional LSTM network (AGC-LSTM)
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
1 Online-Ressource.
- Sprache
-
Englisch
- Erschienen in
-
Short-term multi-step-ahead sector-based traffic flow prediction based on the attention-enhanced graph convolutional LSTM network (AGC-LSTM) ; day:7 ; month:5 ; year:2024 ; pages:1-20
Neural computing & applications ; (7.5.2024), 1-20
- Klassifikation
-
Wirtschaft
- Urheber
-
Zhang, Ying
Xu, Shimin
Zhang, Linghui
Jiang, Weiwei
Alam, Sameer
Xue, Dabin
- Beteiligte Personen und Organisationen
-
SpringerLink (Online service)
- DOI
-
10.1007/s00521-024-09827-3
- URN
-
urn:nbn:de:101:1-2407291126589.608616045242
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:46 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Zhang, Ying
- Xu, Shimin
- Zhang, Linghui
- Jiang, Weiwei
- Alam, Sameer
- Xue, Dabin
- SpringerLink (Online service)