Artikel

Additively separable hedonic games with social context

In hedonic games, coalitions are created as a result of the strategic interaction of independent players. In particular, in additively separable hedonic games, every player has valuations for all other ones, and the utility for belonging to a coalition is given by the sum of the valuations for all other players belonging to it. So far, non-cooperative hedonic games have been considered in the literature only with respect to totally selfish players. Starting from the fundamental class of additively separable hedonic games, we define and study a new model in which, given a social graph, players also care about the happiness of their friends: we call this class of games social context additively separable hedonic games (SCASHGs). We focus on the fundamental stability notion of Nash equilibrium, and study the existence, convergence and performance of stable outcomes (with respect to the classical notions of price of anarchy and price of stability) in SCASHGs. In particular, we show that SCASHGs are potential games, and therefore Nash equilibria always exist and can be reached after a sequence of Nash moves of the players. Finally, we provide tight or asymptotically tight bounds on the price of anarchy and the price of stability of SCASHGs.

Sprache
Englisch

Erschienen in
Journal: Games ; ISSN: 2073-4336 ; Volume: 12 ; Year: 2021 ; Issue: 3 ; Pages: 1-14 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
coalition formation
hedonic games
nash equilibrium
price of anarchy
price of stability
social context

Ereignis
Geistige Schöpfung
(wer)
Monaco, Gianpiero
Moscardelli, Luca
Velaj, Yllka
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2021

DOI
doi:10.3390/g12030071
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Monaco, Gianpiero
  • Moscardelli, Luca
  • Velaj, Yllka
  • MDPI

Entstanden

  • 2021

Ähnliche Objekte (12)