Arbeitspapier

On robust local polynomial estimation with long-memory errors

Prediction in time series models with a trend requires reliable estima- tion of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if least squares regression is used. In this paper, local polynomial smoothing based on M-estimators are asymptotically equivalent to the least square solution, under the (ideal) Gaussian model. Outliers turn out to have a major effect on nonrobust bandwidht selection, in particular due to the change of the dependence structure.

Language
Englisch

Bibliographic citation
Series: CoFE Discussion Paper ; No. 00/18

Classification
Wirtschaft
Subject
Zeitreihenanalyse
Nichtparametrisches Verfahren
Robustes Verfahren
Theorie
Statistischer Fehler

Event
Geistige Schöpfung
(who)
Beran, Jan
Feng, Yuanhua
Gosh, Sucharita
Sibbertsen, Philipp
Event
Veröffentlichung
(who)
University of Konstanz, Center of Finance and Econometrics (CoFE)
(where)
Konstanz
(when)
2000

Handle
URN
urn:nbn:de:bsz:352-opus-5226
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Beran, Jan
  • Feng, Yuanhua
  • Gosh, Sucharita
  • Sibbertsen, Philipp
  • University of Konstanz, Center of Finance and Econometrics (CoFE)

Time of origin

  • 2000

Other Objects (12)