Arbeitspapier
Nonparametric M-Estimation with Long-Memory Errors
We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind this study is illustrated with an example.
- Language
- 
                Englisch
 
- Bibliographic citation
- 
                Series: CoFE Discussion Paper ; No. 00/19
 
- Classification
- 
                Wirtschaft
 
- Subject
- 
                Zeitreihenanalyse
 Nichtparametrisches Verfahren
 Theorie
 Statistischer Fehler
 
- Event
- 
                Geistige Schöpfung
 
- (who)
- 
                Beran, Jan
 Gosh, Sucharita
 Sibbertsen, Philipp
 
- Event
- 
                Veröffentlichung
 
- (who)
- 
                University of Konstanz, Center of Finance and Econometrics (CoFE)
 
- (where)
- 
                Konstanz
 
- (when)
- 
                2000
 
- Handle
- URN
- 
                
                    
                        urn:nbn:de:bsz:352-opus-5199
- Last update
- 
                
                    
                        10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Beran, Jan
- Gosh, Sucharita
- Sibbertsen, Philipp
- University of Konstanz, Center of Finance and Econometrics (CoFE)
Time of origin
- 2000
 
        
    