Arbeitspapier

A Class of Adaptive Importance Sampling Weighted EM Algorithms for Efficient and Robust Posterior and Predictive Simulation

A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic method makes use of sequences of importance weighted Expectation Maximization steps in order to efficiently construct a mixture of Student-t densities that approximates accurately the target distribution - typically a posterior distribution, of which we only require a kernel - in the sense that the Kullback-Leibler divergence between target and mixture is minimized. We label this approach Mixture of t by Importance Sampling and Expectation Maximization (MitISEM). The constructed mixture is used as a candidate density for quick and reliable application of either Importance Sampling (IS) or the Metropolis-Hastings (MH) method. We also introduce three extensions of the basic MitISEM approach. First, we propose a method for applying MitISEM in a sequential manner. Second, we introduce a permutation-augmented MitISEM approach. Third, we propose a partial MitISEM approach, which aims at approximating the joint distribution by estimating a product of marginal and conditional distributions. This division can substantially reduce the dimension of the approximation problem, which facilitates the application of adaptive importance sampling for posterior simulation in more complex models with larger numbers of parameters. Our results indicate that the proposed methods can substantially reduce the computational burden in econometric models like DCC or mixture GARCH models and a mixture instrumental variables model.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 12-026/4

Klassifikation
Wirtschaft
Bayesian Analysis: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Thema
mixture of Student-t distributions
importance sampling
Kullback-Leibler divergence
Expectation Maximization
Metropolis-Hastings algorithm
predictive likelihood
DCC GARCH
mixture GARCH
instrumental variables
Statistische Verteilung
Prognoseverfahren
Algorithmus
Instrumentalvariablen-Schätzmethode
ARCH-Modell
Theorie

Ereignis
Geistige Schöpfung
(wer)
Hoogerheide, Lennart
Opschoor, Anne
van Dijk, Herman K.
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2012

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hoogerheide, Lennart
  • Opschoor, Anne
  • van Dijk, Herman K.
  • Tinbergen Institute

Entstanden

  • 2012

Ähnliche Objekte (12)