Arbeitspapier

On the Estimation of Treatment Effects with Endogenous Misreporting

Participation in social programs is often misreported in survey data, complicating the estimation of the effects of those programs. In this paper, we propose a model to estimate treatment effects under endogenous participation and endogenous misreporting. We show that failure to account for endogenous misreporting can result in the estimate of the treatment effect having an opposite sign from the true effect. We present an expression for the asymptotic bias of both OLS and IV estimators and discuss the conditions under which sign reversal may occur. We provide a method for eliminating this bias when researchers have access to information related to both participation and misreporting. We establish the consistency and asymptotic normality of our estimator and assess its small sample performance through Monte Carlo simulations. An empirical example is given to illustrate the proposed method.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 11426

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
Model Construction and Estimation
Thema
endogeneity
misclassification
treatment effect
binary regressor
partial observability
bias

Ereignis
Geistige Schöpfung
(wer)
Nguimkeu, Pierre
Denteh, Augustine
Tchernis, Rusty
Ereignis
Veröffentlichung
(wer)
Institute of Labor Economics (IZA)
(wo)
Bonn
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:46 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Nguimkeu, Pierre
  • Denteh, Augustine
  • Tchernis, Rusty
  • Institute of Labor Economics (IZA)

Entstanden

  • 2018

Ähnliche Objekte (12)