A comparison of biased simulation schemes for stochastic volatility models

Abstract: Using an Euler discretisation to simulate a mean-reverting CEV process gives rise to the problem that while the process itself is guaranteed to be nonnegative, the discretisation is not. Although an exact and efficient simulation algorithm exists for this process, at present this is not the case for the CEV-SV stochastic volatility model, with the Heston model as a special case, where the variance is modelled as a mean-reverting CEV process. Consequently, when using an Euler discretisation, one must carefully think about how to fix negative variances. Our contribution is threefold. Firstly, we unify all Euler fixes into a single general framework. Secondly, we introduce the new full truncation scheme, tailored to minimise the positive bias found when pricing European options. Thirdly and finally, we numerically compare all Euler fixes to recent quasi-second order schemes of Kahl and Jäckel and Ninomiya and Victoir, as well as to the exact scheme of Broadie and Kaya. The choice of f

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Postprint
begutachtet (peer reviewed)
In: Quantitative Finance ; 10 (2010) 2 ; 177-194

Klassifikation
Wirtschaft

Ereignis
Veröffentlichung
(wo)
Mannheim
(wann)
2010
Urheber
Lord, Roger
Koekkoek, Remmert
Dijk, Dick van

DOI
10.1080/14697680802392496
URN
urn:nbn:de:0168-ssoar-221279
Rechteinformation
Open Access unbekannt; Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:28 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2010

Ähnliche Objekte (12)