Arbeitspapier

Partial identification of heteroskedastic structural VARs: Theory and Bayesian inference

We consider structural vector autoregressions identified through stochastic volatility. Our focus is on whether a particular structural shock is identified by heteroskedasticity without the need to impose any sign or exclusion restrictions. Three contributions emerge from our exercise: (i) a set of conditions under which the matrix containing structural parameters is partially or globally unique; (ii) a statistical procedure to assess the validity of the conditions mentioned above; and (iii) a shrinkage prior distribution for conditional variances centred on a hypothesis of homoskedasticity. Such a prior ensures that the evidence for identifying a structural shock comes only from the data and is not favoured by the prior. We illustrate our new methods using a U.S. fiscal structural model.

Sprache
Englisch

Erschienen in
Series: DIW Discussion Papers ; No. 2081

Klassifikation
Wirtschaft
Bayesian Analysis: General
Hypothesis Testing: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Fiscal Policy
Thema
Identification Through Heteroskedasticity
Stochastic Volatility
Non-centred Parameterisation
Shrinkage Prior
Normal Product Distribution
Tax Shocks

Ereignis
Geistige Schöpfung
(wer)
Lütkepohl, Helmut
Shang, Fei
Uzeda, Luis
Woźniak, Tomasz
Ereignis
Veröffentlichung
(wer)
Deutsches Institut für Wirtschaftsforschung (DIW)
(wo)
Berlin
(wann)
2024

Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Lütkepohl, Helmut
  • Shang, Fei
  • Uzeda, Luis
  • Woźniak, Tomasz
  • Deutsches Institut für Wirtschaftsforschung (DIW)

Entstanden

  • 2024

Ähnliche Objekte (12)