Arbeitspapier
Partial identification of heteroskedastic structural VARs: Theory and Bayesian inference
We consider structural vector autoregressions identified through stochastic volatility. Our focus is on whether a particular structural shock is identified by heteroskedasticity without the need to impose any sign or exclusion restrictions. Three contributions emerge from our exercise: (i) a set of conditions under which the matrix containing structural parameters is partially or globally unique; (ii) a statistical procedure to assess the validity of the conditions mentioned above; and (iii) a shrinkage prior distribution for conditional variances centred on a hypothesis of homoskedasticity. Such a prior ensures that the evidence for identifying a structural shock comes only from the data and is not favoured by the prior. We illustrate our new methods using a U.S. fiscal structural model.
- Sprache
-
Englisch
- Erschienen in
-
Series: DIW Discussion Papers ; No. 2081
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Hypothesis Testing: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Fiscal Policy
- Thema
-
Identification Through Heteroskedasticity
Stochastic Volatility
Non-centred Parameterisation
Shrinkage Prior
Normal Product Distribution
Tax Shocks
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Lütkepohl, Helmut
Shang, Fei
Uzeda, Luis
Woźniak, Tomasz
- Ereignis
-
Veröffentlichung
- (wer)
-
Deutsches Institut für Wirtschaftsforschung (DIW)
- (wo)
-
Berlin
- (wann)
-
2024
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Lütkepohl, Helmut
- Shang, Fei
- Uzeda, Luis
- Woźniak, Tomasz
- Deutsches Institut für Wirtschaftsforschung (DIW)
Entstanden
- 2024