Artikel
Inference for VARs identified with sign restrictions
There is a fast growing literature that set-identifies structural vector autoregressions (SVARs) by imposing sign restrictions on the responses of a subset of the endogenous variables to a particular structural shock (sign-restricted SVARs). Most methods that have been used to construct pointwise coverage bands for impulse responses of sign-restricted SVARs are justified only from a Bayesian perspective. This paper demonstrates how to formulate the inference problem for sign-restricted SVARs within a moment-inequality framework. In particular, it develops methods of constructing confidence bands for impulse response functions of sign-restricted SVARs that are valid from a frequentist perspective. The paper also provides a comparison of frequentist and Bayesian coverage bands in the context of an empirical application-the former can be substantially wider than the latter.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Quantitative Economics ; ISSN: 1759-7331 ; Volume: 9 ; Year: 2018 ; Issue: 3 ; Pages: 1087-1121 ; New Haven, CT: The Econometric Society
- Classification
-
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- Subject
-
Bayesian inference
frequentist inference
set-identified models
sign restrictions
structural VARs
- Event
-
Geistige Schöpfung
- (who)
-
Granziera, Eleonora
Moon, Hyungsik Roger
Schorfheide, Frank
- Event
-
Veröffentlichung
- (who)
-
The Econometric Society
- (where)
-
New Haven, CT
- (when)
-
2018
- DOI
-
doi:10.3982/QE978
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Granziera, Eleonora
- Moon, Hyungsik Roger
- Schorfheide, Frank
- The Econometric Society
Time of origin
- 2018