Arbeitspapier
Granger causality and regime inference in Bayesian Markov-Switching VARs
We derive restrictions for Granger noncausality in Markov-switching vector autoregressive models and also show under which conditions a variable does not affect the forecast of the hidden Markov process. Based on Bayesian approach to evaluating the hypotheses, the computational tools for posterior inference include a novel block Metropolis-Hastings sampling algorithm for the estimation of the restricted models. We analyze a system of monthly US data on money and income. The test results in MS-VARs contradict those in linear VARs: the money aggregate M1 is useful for forecasting income and for predicting the next period’s state.
- Sprache
-
Englisch
- ISBN
-
978-92-899-1607-3
- Erschienen in
-
Series: ECB Working Paper ; No. 1794
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Hypothesis Testing: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Business Fluctuations; Cycles
- Thema
-
Bayesian hypothesis testing
block Metropolis-Hastings sampling
Markov-switching models
mixture models
posterior odds ratio
Kausalanalyse
Markov-Kette
Stichprobenerhebung
VAR-Modell
Schätzung
Industrieproduktion
Geldmenge
USA
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Droumaguet, Matthieu
Warne, Anders
Woźniak, Tomasz
- Ereignis
-
Veröffentlichung
- (wer)
-
European Central Bank (ECB)
- (wo)
-
Frankfurt a. M.
- (wann)
-
2015
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:24 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Droumaguet, Matthieu
- Warne, Anders
- Woźniak, Tomasz
- European Central Bank (ECB)
Entstanden
- 2015