Arbeitspapier
Granger causality and regime inference in Bayesian Markov-Switching VARs
We derive restrictions for Granger noncausality in Markov-switching vector autoregressive models and also show under which conditions a variable does not affect the forecast of the hidden Markov process. Based on Bayesian approach to evaluating the hypotheses, the computational tools for posterior inference include a novel block Metropolis-Hastings sampling algorithm for the estimation of the restricted models. We analyze a system of monthly US data on money and income. The test results in MS-VARs contradict those in linear VARs: the money aggregate M1 is useful for forecasting income and for predicting the next period’s state.
- ISBN
-
978-92-899-1607-3
- Language
-
Englisch
- Bibliographic citation
-
Series: ECB Working Paper ; No. 1794
- Classification
-
Wirtschaft
Bayesian Analysis: General
Hypothesis Testing: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Business Fluctuations; Cycles
- Subject
-
Bayesian hypothesis testing
block Metropolis-Hastings sampling
Markov-switching models
mixture models
posterior odds ratio
Kausalanalyse
Markov-Kette
Stichprobenerhebung
VAR-Modell
Schätzung
Industrieproduktion
Geldmenge
USA
- Event
-
Geistige Schöpfung
- (who)
-
Droumaguet, Matthieu
Warne, Anders
Woźniak, Tomasz
- Event
-
Veröffentlichung
- (who)
-
European Central Bank (ECB)
- (where)
-
Frankfurt a. M.
- (when)
-
2015
- Handle
- Last update
-
10.03.2025, 11:41 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Droumaguet, Matthieu
- Warne, Anders
- Woźniak, Tomasz
- European Central Bank (ECB)
Time of origin
- 2015