Arbeitspapier

Granger causality and regime inference in Bayesian Markov-Switching VARs

We derive restrictions for Granger noncausality in Markov-switching vector autoregressive models and also show under which conditions a variable does not affect the forecast of the hidden Markov process. Based on Bayesian approach to evaluating the hypotheses, the computational tools for posterior inference include a novel block Metropolis-Hastings sampling algorithm for the estimation of the restricted models. We analyze a system of monthly US data on money and income. The test results in MS-VARs contradict those in linear VARs: the money aggregate M1 is useful for forecasting income and for predicting the next period’s state.

ISBN
978-92-899-1607-3
Language
Englisch

Bibliographic citation
Series: ECB Working Paper ; No. 1794

Classification
Wirtschaft
Bayesian Analysis: General
Hypothesis Testing: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Business Fluctuations; Cycles
Subject
Bayesian hypothesis testing
block Metropolis-Hastings sampling
Markov-switching models
mixture models
posterior odds ratio
Kausalanalyse
Markov-Kette
Stichprobenerhebung
VAR-Modell
Schätzung
Industrieproduktion
Geldmenge
USA

Event
Geistige Schöpfung
(who)
Droumaguet, Matthieu
Warne, Anders
Woźniak, Tomasz
Event
Veröffentlichung
(who)
European Central Bank (ECB)
(where)
Frankfurt a. M.
(when)
2015

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Droumaguet, Matthieu
  • Warne, Anders
  • Woźniak, Tomasz
  • European Central Bank (ECB)

Time of origin

  • 2015

Other Objects (12)