Arbeitspapier

Wild Bootstrap Inference for Wildly Different Cluster Sizes

The cluster robust variance estimator (CRVE) relies on the number of clusters being large. The precise meaning of 'large' is ambiguous, but a shorthand 'rule of 42' has emerged in the literature. We show that this rule depends crucially on the assumption of equal-sized clusters. Monte Carlo evidence suggests that rejection frequencies at the five percent level can be more than twice the desired size when a dataset has 50 clusters proportional to the populations of the US states. In contrast, using a cluster wild bootstrap procedure for the same dataset usually results in very accurate rejection frequencies. We also show that, when the test regressor is a dummy variable, both conventional and bootstrap tests perform badly when the proportion of clusters treated is very small or very large. A third set of simulations uses placebo laws to see whether similar results hold in a difference-in-differences framework.

Sprache
Englisch

Erschienen in
Series: Queen's Economics Department Working Paper ; No. 1314

Klassifikation
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Thema
CRVE
grouped data
clustered data
panel data
cluster wild bootstrap
difference in differences
effective number of clusters
placebo laws

Ereignis
Geistige Schöpfung
(wer)
MacKinnon, James G.
Webb, Matthew D.
Ereignis
Veröffentlichung
(wer)
Queen's University, Department of Economics
(wo)
Kingston (Ontario)
(wann)
2014

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • MacKinnon, James G.
  • Webb, Matthew D.
  • Queen's University, Department of Economics

Entstanden

  • 2014

Ähnliche Objekte (12)