Arbeitspapier

Empirical likelihood estimators for the error distribution in nonparametric regression models

The aim of this paper is to show that existing estimators for the error distribution in nonparametric regression models can be improved when additional information about the distribution is included by the empirical likelihood method. The weak convergence of the resulting new estimator to a Gaussian process is shown and the performance is investigated by comparison of asymptotic mean squared errors and by means of a simulation study. As a by-product of our proofs we obtain stochastic expansions for smooth linear estimators based on residuals from the nonparametric regression model.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2005,45

Subject
empirical distribution function
empirical likelihood
error distribution
estimating function
nonparametric regression
Owen estimator

Event
Geistige Schöpfung
(who)
Kiwitt, Sebastian
Nagel, Eva-Renate
Neumeyer, Natalie
Event
Veröffentlichung
(who)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2005

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Kiwitt, Sebastian
  • Nagel, Eva-Renate
  • Neumeyer, Natalie
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2005

Other Objects (12)