Journal article | Zeitschriftenartikel

Local Likelihood Estimators in a Regression Model for Stock Returns

We consider a non-stationary regression type model for stock returns in which the innovations are described by four-parameter distributions and the parameters are assumed to be smooth, deterministic functions of time. Incorporating also normal distributions for modelling the innovations, our model is capable of adapting to light-tailed innovations as well as to heavy-tailed ones. Thus, it turns out to be a very flexible approach. Both, for the fitting of the model and for forecasting the distributions of future returns, we use local likelihood methods for estimation of the parameters. We apply our model to the S&P 500 return series, observed over a period of twelve years. We show that it fits these data quite well and that it yields reasonable one-day-ahead forecasts.

Local Likelihood Estimators in a Regression Model for Stock Returns

Urheber*in: Jönck, Uwe Christian

Free access - no reuse

Extent
Seite(n): 619-635
Language
Englisch
Notes
Status: Postprint; begutachtet (peer reviewed)

Bibliographic citation
Quantitative Finance, 8(6)

Subject
Wirtschaft
Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik
Allgemeines, spezielle Theorien und Schulen, Methoden, Entwicklung und Geschichte der Wirtschaftswissenschaften
Theorieanwendung

Event
Geistige Schöpfung
(who)
Jönck, Uwe Christian
Event
Veröffentlichung
(where)
Vereinigtes Königreich
(when)
2008

DOI
URN
urn:nbn:de:0168-ssoar-221111
Rights
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
Last update
21.06.2024, 4:26 PM CEST

Data provider

This object is provided by:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. If you have any questions about the object, please contact the data provider.

Object type

  • Zeitschriftenartikel

Associated

  • Jönck, Uwe Christian

Time of origin

  • 2008

Other Objects (12)