Arbeitspapier

Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections

This paper describes an algorithm to compute the distribution of conditional forecasts, i.e. projections of a set of variables of interest on future paths of some other variables, in dynamic systems. The algorithm is based on Kalman filtering methods and is computationally viable for large models that can be cast in a linear state space representation. We build large vector autoregressions (VARs) and a large dynamic factor model (DFM) for a quarterly data set of 26 euro area macroeconomic and financial indicators. Both approaches deliver similar forecasts and scenario assessments. In addition, conditional forecasts shed light on the stability of the dynamic relationships in the euro area during the recent episodes of financial turmoil and indicate that only a small number of sources drive the bulk of the fluctuations in the euro area economy.

Sprache
Englisch
ISBN
978-92-899-1141-2

Erschienen in
Series: ECB Working Paper ; No. 1733

Klassifikation
Wirtschaft
Bayesian Analysis: General
Estimation: General
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Forecasting Models; Simulation Methods
Thema
Bayesian shrinkage
conditional forecast
dynamic factor model
large cross-sections
vector autoregression

Ereignis
Geistige Schöpfung
(wer)
Bańbura, Marta
Giannone, Domenico
Lenza, Michele
Ereignis
Veröffentlichung
(wer)
European Central Bank (ECB)
(wo)
Frankfurt a. M.
(wann)
2014

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Bańbura, Marta
  • Giannone, Domenico
  • Lenza, Michele
  • European Central Bank (ECB)

Entstanden

  • 2014

Ähnliche Objekte (12)