Arbeitspapier
Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity. We establish the asymptotic validity of three easy-toimplement alternative bootstrap proposals for stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in small samples than the conventional large-sample approximation based on robust standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical applications the proposed robust bootstrap procedures should routinely replace conventional bootstrap procedures based on the i.i.d. error assumption.
- Language
-
Englisch
- Bibliographic citation
-
Series: Discussion Paper Series 1 ; No. 2002,26
- Classification
-
Wirtschaft
Model Evaluation, Validation, and Selection
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Statistical Simulation Methods: General
- Subject
-
wild bootstrap
pairwise bootstrap
robust inference
Bootstrap-Verfahren
ARCH-Modell
Stochastischer Prozess
Volatilität
Zeitreihenanalyse
Heteroskedastizität
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Kilian, Lutz
Gonçalves, Sílvia
- Event
-
Veröffentlichung
- (who)
-
Deutsche Bundesbank
- (where)
-
Frankfurt a. M.
- (when)
-
2002
- Handle
- Last update
-
10.03.2025, 11:45 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Kilian, Lutz
- Gonçalves, Sílvia
- Deutsche Bundesbank
Time of origin
- 2002