Arbeitspapier

Modelling Different Volatility Components

This paper considers simultaneous modelling of seasonality, slowly changing un- conditional variance and conditional heteroskedasticity in high-frequency fiancial returns. A new approach, called a seasonal SEMIGARCH model, is proposed to perform this by introducing multiplicative seasonal and trend components into the GARCH model. A data-driven semiparametric algorithm is developed for estimat- ing the model. Asymptotic properties of the proposed estimators are investigated briefly. An approximate significance test of seasonality and the use of Monte Carlo confidence bounds for the trend are proposed. Practical performance of the pro- posal is investigated in detail using some German stock price returns. The approach proposed here provides a useful semiparametric extension of the GARCH model.

Sprache
Englisch

Erschienen in
Series: CoFE Discussion Paper ; No. 02/18

Klassifikation
Wirtschaft
Thema
High-frequency financial data
nonparametric regression
seasonality in volatility
semiparametric GARCH model
trend in volatility
Kapitalertrag
Börsenkurs
Volatilität
Nichtparametrisches Verfahren
ARCH-Modell
Schätzung
Theorie
Deutschland

Ereignis
Geistige Schöpfung
(wer)
Feng, Yuanhua
Ereignis
Veröffentlichung
(wer)
University of Konstanz, Center of Finance and Econometrics (CoFE)
(wo)
Konstanz
(wann)
2002

Handle
URN
urn:nbn:de:bsz:352-opus-9481
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Feng, Yuanhua
  • University of Konstanz, Center of Finance and Econometrics (CoFE)

Entstanden

  • 2002

Ähnliche Objekte (12)