Arbeitspapier
Modelling Different Volatility Components
This paper considers simultaneous modelling of seasonality, slowly changing un- conditional variance and conditional heteroskedasticity in high-frequency fiancial returns. A new approach, called a seasonal SEMIGARCH model, is proposed to perform this by introducing multiplicative seasonal and trend components into the GARCH model. A data-driven semiparametric algorithm is developed for estimat- ing the model. Asymptotic properties of the proposed estimators are investigated briefly. An approximate significance test of seasonality and the use of Monte Carlo confidence bounds for the trend are proposed. Practical performance of the pro- posal is investigated in detail using some German stock price returns. The approach proposed here provides a useful semiparametric extension of the GARCH model.
- Sprache
-
Englisch
- Erschienen in
-
Series: CoFE Discussion Paper ; No. 02/18
- Klassifikation
-
Wirtschaft
- Thema
-
High-frequency financial data
nonparametric regression
seasonality in volatility
semiparametric GARCH model
trend in volatility
Kapitalertrag
Börsenkurs
Volatilität
Nichtparametrisches Verfahren
ARCH-Modell
Schätzung
Theorie
Deutschland
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Feng, Yuanhua
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Konstanz, Center of Finance and Econometrics (CoFE)
- (wo)
-
Konstanz
- (wann)
-
2002
- Handle
- URN
-
urn:nbn:de:bsz:352-opus-9481
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Feng, Yuanhua
- University of Konstanz, Center of Finance and Econometrics (CoFE)
Entstanden
- 2002