Arbeitspapier

Modelling Different Volatility Components

This paper considers simultaneous modelling of seasonality, slowly changing un- conditional variance and conditional heteroskedasticity in high-frequency fiancial returns. A new approach, called a seasonal SEMIGARCH model, is proposed to perform this by introducing multiplicative seasonal and trend components into the GARCH model. A data-driven semiparametric algorithm is developed for estimat- ing the model. Asymptotic properties of the proposed estimators are investigated briefly. An approximate significance test of seasonality and the use of Monte Carlo confidence bounds for the trend are proposed. Practical performance of the pro- posal is investigated in detail using some German stock price returns. The approach proposed here provides a useful semiparametric extension of the GARCH model.

Language
Englisch

Bibliographic citation
Series: CoFE Discussion Paper ; No. 02/18

Classification
Wirtschaft
Subject
High-frequency financial data
nonparametric regression
seasonality in volatility
semiparametric GARCH model
trend in volatility
Kapitalertrag
Börsenkurs
Volatilität
Nichtparametrisches Verfahren
ARCH-Modell
Schätzung
Theorie
Deutschland

Event
Geistige Schöpfung
(who)
Feng, Yuanhua
Event
Veröffentlichung
(who)
University of Konstanz, Center of Finance and Econometrics (CoFE)
(where)
Konstanz
(when)
2002

Handle
URN
urn:nbn:de:bsz:352-opus-9481
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Feng, Yuanhua
  • University of Konstanz, Center of Finance and Econometrics (CoFE)

Time of origin

  • 2002

Other Objects (12)