Arbeitspapier

VC: A method for estimating time-varying coefficients in linear models

This paper describes a moments estimator for a standard state-space model with coefficients generated by a random walk. A penalized least squares estimation is linked to the GLS (Aitken) estimates of the corresponding linear model with time-invariant parameters. The VC estimator is a moments estimator that does not require the disturbances be Gaussian, but if they are, its estimates are asymptotically equivalent to maximum likelihood estimates. In contrast to Kalman filtering, no specification of an initial state or an initial covariance matrix is required. While the Kalman filter is one-sided, the VC filter is two-sided and uses more of the available information for estimating intermediate states. Further, the VC filter has a clear descriptive interpretation.

Language
Englisch

Bibliographic citation
Series: Munich Discussion Paper ; No. 2019-3

Classification
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Construction and Estimation
Model Evaluation, Validation, and Selection
Subject
time-series analysis
linear model
state-space estimation
time-varying coefficients
moments estimation
Kalman filtering
penalized least squares

Event
Geistige Schöpfung
(who)
Schlicht, Ekkehart
Event
Veröffentlichung
(who)
Ludwig-Maximilians-Universität München, Volkswirtschaftliche Fakultät
(where)
München
(when)
2019

DOI
doi:10.5282/ubm/epub.59143
Handle
URN
urn:nbn:de:bvb:19-epub-69765-2
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Schlicht, Ekkehart
  • Ludwig-Maximilians-Universität München, Volkswirtschaftliche Fakultät

Time of origin

  • 2019

Other Objects (12)