Arbeitspapier
VC: A method for estimating time-varying coefficients in linear models
This paper describes a moments estimator for a standard state-space model with coefficients generated by a random walk. A penalized least squares estimation is linked to the GLS (Aitken) estimates of the corresponding linear model with time-invariant parameters. The VC estimator is a moments estimator that does not require the disturbances be Gaussian, but if they are, its estimates are asymptotically equivalent to maximum likelihood estimates. In contrast to Kalman filtering, no specification of an initial state or an initial covariance matrix is required. While the Kalman filter is one-sided, the VC filter is two-sided and uses more of the available information for estimating intermediate states. Further, the VC filter has a clear descriptive interpretation.
- Sprache
-
Englisch
- Erschienen in
-
Series: Munich Discussion Paper ; No. 2019-3
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Construction and Estimation
Model Evaluation, Validation, and Selection
- Thema
-
time-series analysis
linear model
state-space estimation
time-varying coefficients
moments estimation
Kalman filtering
penalized least squares
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Schlicht, Ekkehart
- Ereignis
-
Veröffentlichung
- (wer)
-
Ludwig-Maximilians-Universität München, Volkswirtschaftliche Fakultät
- (wo)
-
München
- (wann)
-
2019
- DOI
-
doi:10.5282/ubm/epub.59143
- Handle
- URN
-
urn:nbn:de:bvb:19-epub-69765-2
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Schlicht, Ekkehart
- Ludwig-Maximilians-Universität München, Volkswirtschaftliche Fakultät
Entstanden
- 2019