Arbeitspapier

VC: A method for estimating time-varying coefficients in linear models

This paper describes a moments estimator for a standard state-space model with coefficients generated by a random walk. A penalized least squares estimation is linked to the GLS (Aitken) estimates of the corresponding linear model with time-invariant parameters. The VC estimator is a moments estimator that does not require the disturbances be Gaussian, but if they are, its estimates are asymptotically equivalent to maximum likelihood estimates. In contrast to Kalman filtering, no specification of an initial state or an initial covariance matrix is required. While the Kalman filter is one-sided, the VC filter is two-sided and uses more of the available information for estimating intermediate states. Further, the VC filter has a clear descriptive interpretation.

Sprache
Englisch

Erschienen in
Series: Munich Discussion Paper ; No. 2019-3

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Construction and Estimation
Model Evaluation, Validation, and Selection
Thema
time-series analysis
linear model
state-space estimation
time-varying coefficients
moments estimation
Kalman filtering
penalized least squares

Ereignis
Geistige Schöpfung
(wer)
Schlicht, Ekkehart
Ereignis
Veröffentlichung
(wer)
Ludwig-Maximilians-Universität München, Volkswirtschaftliche Fakultät
(wo)
München
(wann)
2019

DOI
doi:10.5282/ubm/epub.59143
Handle
URN
urn:nbn:de:bvb:19-epub-69765-2
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Schlicht, Ekkehart
  • Ludwig-Maximilians-Universität München, Volkswirtschaftliche Fakultät

Entstanden

  • 2019

Ähnliche Objekte (12)